Haijiao Zhang¹, Kevin Watanabe-Smith¹, Daelynn Beulow², Daniel Bottomly¹, Beth Wilmot¹, Shannon McWeeney¹, Yong-dong Wang³, Hagop Kantarjian⁴, Judy Ho⁵, Jeremy Davis⁵, Blake Pond⁶, Gautam Borthakur⁴, Abhijit Ramachandran⁵, Jorge Cortes⁴, Robert Collins⁶, Sharyn Baker² and Jeffrey Tyner¹

Abstract

Introduction: Variation of the D835 residue of FLT3 occurs in ~5% of *de novo* AML cases and is a prominent feature of drug resistance in the setting of FLT3-ITD. Crenolanib treatment of AML patients exhibiting FLT3 D835 and/or FLT3-ITD positive tumors has yielded significant clinical responses. However, these clinical responses to single-agent crenolanib were transient, so we performed whole exome sequencing to determine the mechanisms of crenolanib resistance. Mutation of the FLT3 F691 "gatekeeper" residue is a known resistance mechanism to crenolanib and other FLT3 inhibitors in vitro. Hence, secondary mutation of FLT3 at the gatekeeper or other sites was hypothesized to be a predominant mechanism of resistance. We report that a minority of patients acquired FLT3 gatekeeper or other secondary FLT3 mutations, however, the majority of cases relapsed in the absence of additional FLT3 mutations indicating alternative mechanisms of drug resistance.

#2468

Methods: Genomic DNA was isolated from bone marrow aspirates from 42 AML patients treated with crenolanib. We performed whole exome sequencing using Illumina Nextera exome capture and paired-end sequencing on an Illumina 2500 HiSeq. Paired specimens (pre/post-treatment) were available for 19 of these patients, allowing for analysis of acquired mutations in the context of crenolanib therapy.

Results: Although secondary mutation of FLT3 at the gatekeeper residue, FLT3 F691, was predicted to be a prominent mechanism of resistance, we did not observe FLT3 gatekeeper mutations in most patients. In total, only 3/42 (7%) of cases exhibited a FLT3 gatekeeper mutation despite good coverage of the FLT3 locus (average of 134 fold read depth; range of 77-177 fold average read depth across all 42 cases). In addition, we observed secondary FLT3 mutations at alternative residues, D200N, K429E, and L601F, in 3 other patients. Hence, only 6/42 (14%) of patients exhibited evidence of relapse due to secondary mutation of FLT3, and the majority of patients (38/42; 86%) presented with crenolanib resistance in the absence of secondary FLT3 mutations. Exome analysis revealed that many of these cases acquired mutations involving transcriptional regulators, suggesting alternate pathways of escape as the predominant mechanism of resistance to crenolanib therapy.

Conclusions: Crenolanib is broadly effective against FLT3-ITD and FLT3-D835 mutant AML. Despite predictions of FLT3 gatekeeper mutations (or other secondary FLT3 mutations) as a primary mechanism of resistance, we only observed these events in a minority of patients. Instead, we observed a prominent signal of acquired mutations in transcriptional regulators, suggesting a more elaborate genetic/epi-genetic mechanism of resistance to crenolanib.

Introduction

- Crenolanib is a potent, type I inhibitor of FLT3 kinase (1) and binds to both active and inactive conformation of FLT3 (X-ray crystallography data on file)
- Previous studies showed that crenolanib was effective against drug resistance-conferring kinase domain mutations (2). • Saturation mutagenesis experiments in the presence of crenolanib had been unable to select kinase domain mutants as a mechanism of resistance to crenolanib (1)
- Gate keeper mutation F691L and another mutation, D698N, were the only two recurring mutant clones out of 300x10⁶ clones screened in the presence of low dose crenolanib (100 nM) (1)
- Type II FLT3 inhibitors, including quizartinib, sorafenib, ponatinib and pexidartinib (PLX3397), have been studied in FLT3 positive AML patients
- These type II inhibitors, binding only to the inactive conformation of FLT3, are intrinsically resistant to activating mutations in the kinase domain (TKD) (Figure 1)
- Acquisition of activating mutations in the kinase domain (D835) are commonly seen after treatment with these type II FLT3 inhibitors (3-4)
- In this study, whole exome sequencing as well as ultra-deep sequencing of FLT3 exon 17 and 20 were conducted to identify potential mechanism of resistance to crenolanib

FLT 3	Crenolanib IC ₅₀			Ту	pe II		Туре I	
Mutation	(nM)	-	Quizartinib	Sorafenib	Ponatinib	PLX3397	Crenolanib	- Most
ITD	9.1 ± 3.8	ITD+D835V	560	2602	223	324	1	
D835V	2.9 ± 0.5	ITD+D835P	1463	2506	226	415	1	· · ·
ΓΟΩΓΥ		ITD+D835I	713	2424	194	1968	1	8
D835Y	5.3 ± 2.7	ITD+D835Del	318	1794	166	122	1	
ITD + F691L	55.4 ± 14.4	ITD+D835Y	182	1678	160	207	1	6
	121 ± 1 8	ITD+D835H	45	295	132	40	1	
110 + 0000 4	13.1 ± 4.0	ITD+D835A	10	70	34	18	1	4
ITD + D835Y	13.9 ± 4.3	ITD+D835G	10	51	11	14	1	
ITD + D835H	123+25	ITD+D835E	6	19	11	9	1	2
	12.0 ± 2.0	ITD+D835N	7	17	11	10	1	
ITD + D835F	16.5 ± 0.4	ITD	1	1	11	1	1	0

Table 1. IC₅₀ of crenolanib on different FLT3 mutations (1).

Figure 1. Relative resistance of different FLT3 inhibitors. The values are fold-difference in IC₅₀ relative to ITD alone (Figure adapted from Smith et. al. (2015) Leukemia. doi:10.1038 (2).

Objectives

- To determine if resistance to crenolanib is due to acquisition of secondary FLT3 mutations
- To determine additional somatic mutations in the exome that may be acquired at the time of crenolanib resistance

Methods

Patient population: Samples in this study were collected from relapsed/refractory AML patients who received crenolanib as monotherapy. The sampled population included patients who have had durable responses to crenolanib, as well as those who have had transient responses to crenolanib.

Whole Exome Sequencing: To determine the potential mechanism of crenolanib resistance, the bone marrow and/ or peripheral blood samples from 42 patients who had progressed after treatment with crenolanib were assessed by whole exome sequencing. We performed whole exome sequencing using Illumina Next era exome capture and pairedend sequencing on an Illumina 2500 HiSeq. Paired specimens (before/after resistance) were available for 19 of these patients, allowing for analysis of acquired mutations in the context of crenolanib therapy. For the other 17 patients, samples at the time of relapse were available.

Ultra-deep Sequencing: Exon 17 and exon 20 of FLT3 were also sequenced in 20 patient samples to an average of 224,693 reads by MiSeq Next-Generation Sequencing (Illumina) (3). Samples from 17 patients were paired samples before and after crenolanib treatment.

Exome Sequencing Informs Mechanisms of Clinical Resistance to the FLT3 Inhibitor Crenolanib

Ultra-deep Sequencing of FLT3 TKD

No New D835 Mutations Arise After Crenolanib Treatment

Exon 20 of FLT3 was sequenced in paired samples from six (6) patients who had FLT3 ITD with no TKD mutations at the time of starting crenolanib • With an average of 203,964 reads, there is no evidence of acquisition or increase in allelic burden in any of the D835Y/H/R/V mutations at the time of relapse

Patient	Cycle/Day	Baseline FLT3	D835Y <mark>GAT > T</mark>	D835H GAT >C	D835R GAT > CG	D835V GAT > T	Coverage D835Y/H/R	Coverage D835V
	C1D1		11	2	0	19	268886	270143
1879	C1D14	ITD	34	20	0	28	177948	177610
	C2D1		23	15	0	37	191771	191465
1001	C1D1		32	10	0	28	197143	196055
1901	C3D1	ΠD	41	12	0	19	185162	183918
	baseline		16	6	0	17	144746	143752
	C2D1		37	11	0	34	162105	160951
	C3D1		26	9	0	26	193904	192782
1914	C5D1	ITD	29	7	0	29	165747	164710
	C6D1		33	23	0	35	178953	178452
	C8D1		13	16	0	27	160944	160309
	C9D1		45	10	1	33	136920	136600
1407	C1D1		8	2	0	11	201548	202325
1497	C4D1	ΠD	120	14	0	39	185818	185818
	C1D1		9	2	0	14	288254	289771
1499	C2D1	ITD	156	442 (0.14%)	1	76	326270	326270
	C3D1		199	45	1	72	272778	272778
1540	C1D1		5	2	0	7	203971	204649
1049	C5D1	ΠD	156	37	0	68	234699	234699

Table 2. D835 mutation status of patients with FLT3-ITD at baseline (data are read counts at each loci).

FLT3 Gatekeeper Mutation F691L Was Infrequent in Crenolanib-treated AML Patients

Gatekeeper mutation F691L of FLT3 is known to be insensitive to crenolanib, based on pre-clinical assay (Table 1) To determine if F691L is a resistance mechanism of crenolanib treatment, the exon 17 of FLT3 was sequenced in samples from 20 AML patients who received one (1) to four (4) months of crenolanib

• Only one (1) out of 20 (5%) of crenolanib-treated AML patients developed gatekeeper mutation F691L at the time of relapse None of the other patient had any apparent increase in the F691L clone

Patient	Cycle/Day	Baseline FLT3	F691L TTT > <mark>C</mark>	F691L TT <mark>T > G</mark>	Coverage TT <mark>T >C</mark>	Coverage TTT > <mark>G</mark>	Patient	Cycle/Day	Baseline FLT3	F691L TTT > <mark>C</mark>	F691L TTT > G	Coverage TTT >C	Coverage TTT > <mark>G</mark>
	C1D1		9	2	180345	180129		C2D1		32	15	185383	185361
1879	C1D14	ITD	23	19	171803	171653	1551	C3D1	ITD+D835	19	14	170146	170109
	C2D1		29	22	202623	202551		C4D1		27	18	194165	194104
	C1D1		11	4	314202	314192		C1D1		12	3	264062	264013
1550	C2D1		37	21	197222	197183	1406	C2D1	D025	43	35	286414	286483
1550	C3D1	110+0000	25	17	177890	177832	1490	C3D1	D035	119	3156 (1.1%)	291153	290912
	C5D1		35	23	228619	228493		C5D1		37	22	310249	309862
1005	C1D1	0025	21	13	201611	201574		C1D1		10	2	168555	168498
1000	C2D1	D030	18	17	198619	198574	1497	C2D1	ITD	39	16	271716	271349
	C1D1		17	15	180745	180699		C4D1		29	27	320876	320189
	C2D1		20	18	172999	172937	1409	C1D1	D025	11	3	227084	227049
1887	C3D1	D835	23	20	184047	184024	1490	C2D1	D035	60	30	389541	389128
	C5D1		17	13	176002	175969		C1D1		14	3	285602	285576
	follow-up		19	11	184083	184022	1499	C2D1	ITD	49	14	332312	332030
1001	C1D1	חדו	31	18	163187	163148		C3D1		50	36	313583	312484
1901	C3D1		19	16	159558	159532	1500	C1D1		9	5	277343	277294
	C1D1		8	2	206330	206228	1500	C2D1	110+0000	2398 (1.6%)	86946 (57%)	149756	151969
1009	C2D1		11	6	81091	81077		C1D1		13	7	202386	202332
1900	C3D1	110-000	14	8	167835	167774	1501	C2D1	ITD+D835	31	17	248251	248451
	C5D1		19	15	189878	189794		C3D1		32	19	212494	212520
1011	C1D1		23	22	159186	159134	1502	C2D1		37	105	311675	311630
1911	C2D1	110-0000	26	16	160907	160861	1502	C3D1	HD+D035	30	90	268368	267768
	baseline		23	18	153825	153829	1502	baseline		34	14	273017	273002
	C2D1		13	14	153144	153094	1505	C2D1	HD+D033	49	40	279834	279662
1014	C3D1		15	16	149792	149732	1504	baseline		56	69	213212	213045
1914	C5D1	ITD	19	11	142185	142162	1504	C2D1	HD+D033	43	45	259562	259518
	C6D1		19	16	171383	171335	1548	C3D1	ITD	42	30	297581	297620
	C8D1		24	17	190831	190821	1510	C1D1		8	2	248287	248247
	C9D1		22	18	178269	178221	1049	C5D1	ΠD	49	26	253419	253455

Table 3. F691 mutation status of all patients (data are read counts at each loci) Crenolanib Has Activity Against FLT3 A833S, D839Y/G and N841K A-loop Mutations

• Low allelic burdens of A833S, D839Y/G and N841K were detected at baseline in four (4) patients, and these clones were eliminated during the course of crenolanib treatment

Patient	Cycle/Day	A833S GCT > T	D839Y <mark>G</mark> AT > T	D839G GAT > G	N841K AAC > A	Coverage A833S	Coverage D839Y	Coverage D839G	Coverage N841K
	C1D1	7	483 (0.29%)	435 (0.27%)	6	161435	165034	161689	160984
	C1D1	9	36	33	8	140308	141173	140007	136938
1550	C2D1	10	13	12	7	166423	167185	165389	162533
	C3D1	10	8	11	5	141608	143459	140103	138620
	C5D1	8	11	9	15	477283	477803	476402	474245
	C1D1	4	9	13	311 (0.44%)	76676	77140	74859	71166
1000	C2D1	8	11	15	7	158847	158848	155074	153738
1908	C3D1	9	14	10	9	174660	174130	171036	169603
	C5D1	7	12	7	6	175004	174990	172601	170114
1407	C1D1	8	1945 (0.96%)	7	7	201582	203442	199954	197003
1497	C4D1	4	31	12	6	185833	187380	182663	180028
1400	C1D1	5949 (3.33%)	19	6	5	178598	178153	174655	171101
1490	C2D1	11	27	15	12	279026	280699	275706	274450

Resistan

- Three (3) novel mutations were identified, and two (2) of them were present at the time of treatment initiation
- The importance of L601F, K429E and D200N (see position in figure 2) is currently under investigation

Detected Three Novel Mutations of FLT3

Patient	Cycle/Day	Additional FLT3 Mutation	VAF	Coverage	BM blast count
1000	C1D1	L601F	5 (8.5%)	89	83%
1000	C2D1	L601F	6 (9.5%)	63	68%
1897	C1D27	K429E	95 (74%)	129	91%
1007	C1D1	D200N	26 (23%)	113	10%
1907	C1D28	D200N	8 (14%)	58	7%

allelic burden

Cycle/Day	FLT3 mutation	VAF	Coverage	BM blast count
C1D28	F691L	17 (34%)	50	73%
C2D1		0	48	10%
C3D1	FOUL	2 (2.2%)	92	4%
C2D1	F691L	9 (45%)	20	78%
	Cycle/Day C1D28 C2D1 C3D1 C2D1	Cycle/DayFLT3 mutationC1D28F691LC2D1F691LC3D1F691LC2D1F691L	Cycle/DayFLT3 mutationVAFC1D28F691L17 (34%)C2D1 $F691L$ 0C3D1F691L2 (2.2%)C2D1F691L9 (45%)	Cycle/Day FLT3 mutation VAF Coverage C1D28 F691L 17 (34%) 50 C2D1 F691L 0 48 C3D1 F691L 2 (2.2%) 92 C2D1 F691L 9 (45%) 20

BM: bone marrow, VAF: Variant allele frequency; Table 6: FLT3 F691L was detected by exome sequencing in AML patients treated with crenolanib.

BM: bone marrow, VAF: Variant allele frequency Table 5: Additional FLT3 mutations were detected by exome sequencing in AML patients treated with crenolanib.

Full Exome Sequencing

F691L Was Found in 7% of Patients

Consistent with the ultra-deep sequencing results, three (3) out 42 (7%) patients developed a F691L mutation during crenolanib treatment Among the three (3) patients with F691L mutation. only two (2) had a significant

6) pa	atients	with F69	1 L mutatio	on, only t	wo (2) nac	a signiti	can

Additional Gene Mutations May Contribute to Crenolanib Resistance

- VAF after crenolanib resistance (Figure 3)

FLT3										
Patient	1907	1551	1500	1501	1499	1896	1914	1502	1548	1909
NPM1										
DNMT3A										
WT1										
NRAS/KRAS										
TET1										
TET2										
IDH2										
RUNX1										
SF3B1										
STAG2										
IDH1										
ASXL1										
CCND3										
CSF3R										
CEBPA										
PHF6										
U2AF1										
PTPN11										
CBL										
RAD21										
SMC3										
TP53										
CHEK2										
FLT3 D200N										
FLT3 K429E										
FLT3 L601F										
FLT3 F691L										
Table 7. Ove	erall m	utatior	nal spe	ectrum	of all	patien	ts at th	neir lat	est sa	mplin

FLT3										
Patient	1907	1551	1499	1501	1914	1909	1892	1908	1549	190
NPM1	0.22	0.09	0.02	0.06	-0.15	-0.1	-0.05	-0.12	0	0
DNMT3A	0.19	0.44	-0.02	-0.06	-0.23	0	0	0	0.01	0.1
WT1	0.22	0.05	0	0	0	0	0	0	0.12	0
NRAS	0	0	0	0	0	0	0	0	0	0
RUNX1	0	0	0	0	0	0	0	0	0	0
SF3B1	0	0	0	0	0	0	0	0	0	0
STAG2	0	0	0	0	0	0	0	0	0	0
IDH1	0	0	0.14	0	0	0	0	0	0	0
CSF3R	0	0	0	0	0	0	0	0	0	0
BCORL1	0	0	0	0	0	0	0	0	0	0
CEBPA	0	0	0	0	0	0	0	0	0	0
IDH2	0	0	0	0	0	0	0	0	0	0
PHF6	0	0	0	0	0	0	0	0	0	0
TET2	0	0	0	0	0	0.01	0	0	0	0
U2AF1	0	0	0	0	0	0	0	0	0	0.0
ASXL1	0	0	0	0	0	0	0	0	0	0
PTPN11	0	0	0	0	0	0	0.11	0	0	0
FLT3 D200N	-0.09	0	0	0	0	0	0	0	0	0
FLT3 L601F	0	0	0	0	0	0	0	0	0	0
FLT3 F691L	0	0.02	0	0	0	0	0	0	0	0
	_									

Clonal Evolution Patterns Observed in the Relapsed / Refractory AML Patients

- FLT3 ITD + D835 clone was reduced, but a drug resistant subclone emerged during treatment
- Patient 1550 responded to crenolanib and achieved CRi after one cycle of crenolanib (28 days).
- At relapse, patient acquired ASXL1, and a clone with ASXL, IDH2 and PHF6 mutations expanded and became the dominant clone.

Patient	Cycle/Day	WBC	Peripheral	BM Blast	ITD and TKD	ITD Allelic	D835 Allelic	ID	H2	AS	XL1	PF	IF6
	Cycle/Day	(k/ul)	Blast (%)	(%)	Status	burden (%)	Burden (%)	VAF	Coverage	VAF	Coverage	VAF	Coverage
	C1D1	2.3	16	92	ITD + D835	5.6	6.39	NA	NA	NA	NA	NA	NA
1550	C2D1	0.6	0	2	ITD + D835	0	0	13 (3%)	377	0	11	15 (13%)	116
1550	C3D1	0.9	0	3	ITD + D835	0	0	7 (2%)	345	0	7	11 (9.8%)	112
	C5D27	1.2	0	26	ITD + D835	0	0	47 (16.7%)	281	7 (63.6%)	11	45 (41%)	109
			× 44 —		<i>.</i>								

WBC: White blood cells; BM: Bone marrow; VAF: Variant allele frequency; NA: Not available Table 9. Blood count, blast count and mutation status of a patient with a drug resistant subclone

- The founder clone recurred through uncharacterized mechanisms Patient 1914 responded to crenolanib and achieved CR after one cycle of crenolanib (28 days).
- of a drug resistant subclone.

DNI	vii 3A and C	CND3 a	and CHEKZ	•											
Patient	Cycle/Day	WBC	Peripheral	BM Blast	ITD and TKD		D835 Allelic	NP	NPM1		ТЗА	CCND3		CHEK2	
		(K/UI)	Blast (%)	(%)	Status	Buraen (%)	Burden (%)	VAF	Coverage	VAF	Coverage	VAF	Coverage	VAF	Coverage
	Screening	1.1	30	80	ITD	80	0	NA	NA	NA	NA	NA	NA	NA	NA
	C2D1	22.8	0	1	ITD	80	0	NA	NA	NA	NA	NA	NA	NA	NA
	C3D1	7.2	0	3	ITD	NA	0	75 (56%)	134	44 (37.6%)	117	49 (36%)	136	49 (37.4%)	131
1914	C5D1	1.2	0	1	ITD	0	0	0	138	0	109	0	128	4 (3.6%)	111
	C6D1	3.7	0	NA	ITD	0	0	0	186	0	179	0	160	0	159
	C8D1	4	0	12	ITD	0	0	10 (5.7%)	176	2 (1.4%)	147	12 (7.3%)	165	7 (5%)	140
	Follow-up	27.4	60	NA	ITD	30	0	27 (32.9%)	82	18 (22.8%)	79	48 (41.7%)	115	33 (31.7%)	104

Patient	Cvcle/Dav	WBC	Peripheral	BM Blast	ITD and TKD	ITD Allelic	D835 Allelic	NP	M1	DNM	T3A	CC	ND3	CHE	K2
		(K/UI)	Blast (%)	(%)	Status	Burden (%)	Burden (%)	VAF	Coverage	VAF	Coverage	VAF	Coverage	VAF	Coverage
	Screening	1.1	30	80	ITD	80	0	NA	NA	NA	NA	NA	NA	NA	NA
	C2D1	22.8	0	1	ITD	80	0	NA	NA	NA	NA	NA	NA	NA	NA
	C3D1	7.2	0	3	ITD	NA	0	75 (56%)	134	44 (37.6%)	117	49 (36%)	136	49 (37.4%)	131
1914	C5D1	1.2	0	1	ITD	0	0	0	138	0	109	0	128	4 (3.6%)	111
	C6D1	3.7	0	NA	ITD	0	0	0	186	0	179	0	160	0	159
	C8D1	4	0	12	ITD	0	0	10 (5.7%)	176	2 (1.4%)	147	12 (7.3%)	165	7 (5%)	140
	Follow-up	27.4	60	NA	ITD	30	0	27 (32.9%)	82	18 (22.8%)	79	48 (41.7%)	115	33 (31.7%)	104
WBC: Wh Table 10.	2: White blood cells; BM: Bone marrow; VAF: Variant allele frequency; NA: Not available e 10. Blood count, blast count and mutation status of a patient with a recurred founder clone														

FLT3 D835 clone was reduced, but a drug resistant subclone expanded during treatment Patient 1496 had hematological improvement after 4.5 months of crenolanib treatment • Crenolanib was efficient in eliminating the D835 mutant clone, as evidenced by the substantial reduction of the D835 mutant allelic burden.

Patient	Cycle/Day	WBC (k/ul)	Peripheral Blast (%)	BM Blast (%)	ITD and TKD status	D835 Allelic Burden (%)	RUNX1		NRAS		STAG2	
							VAF	Coverage	VAF	Coverage	VAF	Coverage
1496	Screening	2.4	35	47	D835	20	NA	NA	NA	NA	NA	NA
	C2D1	0.9	25	24	D835	9	129 (58.9%)	219	41(16.4%)	250	3 (12%)	25
	C3D1	1.0	21	26	D835	4	113 (62.4%)	184	50 (22.8%)	219	11 (52.4%)	21
	C5D1	2.0	29	74	D835	2	170 (70.8%)	240	135 (47.9%)	282	34 (77.3%)	44

Patient	Cycle/Day	WBC (k/ul)	Peripheral Blast (%)	BM Blast (%)	ITD and TKD status	D835 Allelic Burden (%)	RUNX1		NRAS		STAG2	
							VAF	Coverage	VAF	Coverage	VAF	Coverage
1496	Screening	2.4	35	47	D835	20	NA	NA	NA	NA	NA	NA
	C2D1	0.9	25	24	D835	9	129 (58.9%)	219	41(16.4%)	250	3 (12%)	25
	C3D1	1.0	21	26	D835	4	113 (62.4%)	184	50 (22.8%)	219	11 (52.4%)	21
	C5D1	2.0	29	74	D835	2	170 (70.8%)	240	135 (47.9%)	282	34 (77.3%)	44
VBC: Wh able 11. I	ite blood cells; Blood count, bl	BM: Bone ast count a	marrow; VAF: nd mutation st	Variant allele atus of a pat	e frequency; NA: ient with a drug r	Not available resistant subclone	·.					
							Diecue	einne				

 Crenolanib is broadly effective against FLT3-ITD and FLT3-D835 mutant AML. No secondary D835 mutations were identified • Despite predictions of FLT3 gatekeeper mutations (or other secondary FLT3 mutations) as a primary mechanism of resistance, we observed these events only in a

minority (5 to 7%) of patients • Instead, we observed a prominent signal of mutations in spliceosome (SF3B1), chromatin modifiers (ASXL1), cohesion complex (STAG2) and RAS pathway, suggesting a more elaborate genetic/epi-genetic mechanism of resistance to crenolanib

1. Smith et. al. (2014) PNAS 111: 5319-5324. 2. Smith et. al. (2015) Leukemia. doi:10.1038. 3. Baker et. al. (2013) Clin Cancer Res. 19: 5758-5768.

4. Smith et. al. (2012) Nature. 485: 260-263.

• Overall mutational spectrum identified with whole exome sequencing data from 29 resistance samples showed higher frequency in WT1, NRAS, SF3B1, STAG2, ASXL1, IDH2, TET1 and CCND3 compared to mutation frequency seen in AML patient samples with FLT3 ITD or D835 mutations from TCGA database (n=54) (Table 7). VAF changes (subtraction) before and after crenolanib treatment from 19 paired cases were calculated (Table 8), and NRAS, ASXL1, and STAG2 showed higher

Figure 3. Plot of allele burden of genes before crenolanib treatment against after crenolanib treatment.

• At remission, low level of IDH2 and PHF6 mutant were detected, suggesting the presence of a potentially drug resistant subclone.

• During the time of complete remission, substantial allelic burdens of FLT3-ITD, NPM1, DNMT3A, CCND3 and CHEK2 mutation were detected, implying the likely presence

• Patient received an allogeneic stem cell transplantation after cycle 3 and received crenolanib maintenance therapy 34 days after the transplant. The aberrant clone was completely eradicated, as indicated by the absence of FLT3-ITD as well as NPM1, DNMT3A and CCND3 mutations during cycle 5 and 6. • Four months after transplant, patient relapsed due to minimal residual disease, with mutation profile identical to the founder clone, FLT3-ITD and mutations in NPM1,

However there was a significant increase in the allelic burden of RUNX1. NRAS and STAG2 during the course of treatment. This expanding subclone was likely to be a FLT3

DISCUSSIONS

References

