#3937

A Phase I Study of Crenolanib Plus Sorafenib as a Salvage Therapy for Pediatric Patients with FLT3-ITD+ AML

Hiroto Inaba¹, John C Panetta², Daelynn R Buelow³, Raul C. Ribeiro¹, John R. Eckardt⁴ and Sharyn D Baker^{3,5}

¹Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN; ²Department of Pharmaceutical Sciences St. Jude Children's Research Hospital, Memphis, TN; ³Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH; ⁴Arog Pharmaceuticals Inc., Dallas, TX; ⁵Comprehensive Cancer Center, The Ohio State University, Columbus, OH

Background/Rationale

- FLT3 mutations are found in about 30% of adult AML patients and about 20% of pediatric AML patients and are associated with a poor prognosis [1-2].
- Sorafenib is a Type 2 TKI that has shown efficacy in AML patients with FLT3-ITD (internal tandem duplication) mutations, but eventually most patients relapse or develop resistance [1]. • Acquired secondary mutations in the FLT3 tyrosine kinase domain (TKD) is one mechanism of sorafenib resistance [1-5].
- Crenolanib is a novel Type 1 TKI that can inhibit both ITD and TKD FLT3 mutants, including known FLT3-TKD mutants associated with sorafenib resistance [3-5].
- Preclinical research has demonstrated enhanced anti-leukemic activity both in vitro and in vivo by combining crenolanib and sorafenib treatment [4-5].

Crenolanib can target sorafenib resistant *FLT3* mutants [5]

	Crenolanib K_{d} , nM	Sorafenib K_{d} , nM
FLT3 variant		
FLT3	0.15	13†
FLT3 (ITD)	0.26	95
FLT3 (D835H)	0.16	11
FLT3 (D835Y)	0.14	24
FLT3 (D835V)	3.3	140
FLT3 (ITD, D835V)	3.6	630
FLT3 (ITD, F691L)	22	860

Combination treatment provides additive/synergistic apoptotic effects on *FLT3* mutant cell lines [3]

Combination therapy enhances anti-leukemic activity in mouse FLT3-ITD AML xenograft model [4]

Objectives

Primary Objectives

- Safety and tolerability
- AE profile

Secondary Objectives

- Pharmacokinetics
- Anti-leukemia activity

Treatment Schema

Dose Level	Crenolanib (per day × 28 days)	Sorafenib (per dose × 28 days)	Maximum dose of Sorafenib
1	66.7 mg/m ² divided into 3 doses*	150 mg/m ² QD	300 mg
2	66.7 mg/m ² divided into 3 doses*	200 mg/m ² QD	400 mg
-1	66.7 mg/m ² divided into 3 doses*	200 mg/m ² QOD	400 mg

*Total daily dose is rounded to nearest 20mg then divided TID.

Intrathecal Chemotherapy				
Patient age	Methotrexate	Hydrocortisone	Cytarabine	
1-2 years	8 mg	16 mg	24 mg	
2-3 years	10 mg	20 mg	30 mg	
> 3 years	12 mg	24 mg	36 mg	

Demographics/ Prior History

Characteristics	Total (N=9)
Age (yrs), median [range]	9.7 [5.7 – 17.8]
Sex, male	5 (55%)
Baseline Bone Marrow Blasts (%), median [range]	71% [0-98%]
Number of Prior Therapies, median [range]	3 [1–6]
Prior sorafenib	6 (67%)
Prior SCT	4 (45%)
Disease Status	
CNS leukemia	3 (43%)
Extramedullary AML	1 (11%)
FLT3-ITD +	9 (100%)
2 acces did not have CCE avamination	

*2 cases did not have CSF examination

Pharmacokinetic Analysis

- Crenolanib steady-state concentrations were adequate to inhibit both wild-type and mutant FLT3 molecules
- Crenolanib steady-state concentrations were not altered by the addition of sorafenib 150mg/ m² QD on day 8

Safety Analysis

Total Grade Grade Grade Grade

- No DLTs were reported at either sorafenib dose levels.
- 68% of AEs were grade 1 or 2 in severity.

Selected Treatment Emergent AEs-

No QTc prolongation >500ms was observed.

Regardless of Attribution	AEs	1	2	3	4	5
Gastrointestinal disorders						
Diarrhea	4	2	2	0	0	0
Nausea	6	5	1	0	0	0
Vomiting	5	4	1	0	0	0
General disorders and administration site	condition	าร				
Edema face	2	1	1	0	0	0
Edema limbs	2	1	1	0	0	0
Infections and infestations						
Enterocolitis infectious	3	0	0	3	0	0
Lung infection	1	0	0	1	0	0
Otitis media	1	0	0	1	0	1
Sepsis	1	0	0	0	0	0
Respiratory, thoracic and mediastinal disc	orders					
Bronchopulmonary hemorrhage	1	0	0	0	0	1
Respiratory failure	1	0	0	0	0	1
Skin and subcutaneous tissue disorders						
Palmar-plantar erythrodyses thesia syndrome	1	0	1	0	0	0
Pruritus	2	2	0	0	0	0
Rash maculo-papular	6	4	1	1	0	0
Urticaria	1	0	1	0	0	0
Vascular disorders						
Hypertension	1	1	0	0	0	0
Hypotension	1	0	0	1	0	0
Liver Function Tests						
Alanine aminotransferase increased	8	2	2	4	0	0
Alkaline phosphatase increased	1	0	0	1	0	0
Aspartate aminotransferase increased	8	3	3	2	0	0
Blood bilirubin increased	4	1	2	1	0	0
CCT in area and	1	4	4	4	1	

Two deaths occurred on study

GGT increased

- Pancytopenia with Enterobacter sepsis
- Pancytopenia with E.coli bacteremia and pulmonary hemorrhage (post intubation)

Efficacy Evaluations

Patient ID	Dose Level	Disease	Best Response
1*	1	AML#	CR
2*	1	AML	RDCB
3*	1	AML#	PR
4	2	AML	CRi
5	2	AML	RDCB
6*	2	AML with CNS Involvement	NR
7	2	AML with CNS Involvement	NR
8*	2 [†]	EMD AML#	NE [†]
9*	2	AML with CNS Involvement#	CR

* Patients who received prior sorafenib therapy # Patients who received prior hematopoietic stem cell transplantation †Patient not evaluable due to development of graft-versus-host disease but had near complete disappearnce of EMD. CNS: Central nervous system, EMD: Extramedullary disease, CR: Complete Response, RDCB: Resistant disease with clinical benefit (no peripheral or CNS blasts), PR: Partial Response, NR: no response, NE: not evaluable

Reduction in Circulating AML Blasts on Cycle 1

Note: All but 1 patient had disappearance of peripheral blasts. Patients 1 and 8 did not have detectable peripheral blasts at enrollemnt.

Median Overall Survival is 7.3 Months (N=9)

Conclusions

- Crenolanib 66.7 mg/m2 TID can be safely combined with sorafenib at 150 mg/m² QD and 200 mg/m² QD in pediatric patients with relapsed/refractory FLT3+ AML.
- Even in patients with prior exposure to sorafenib, this combination showed clinical benefit for AML patients, represented by rapid reduction of bone marrow and peripheral blasts on cycle 1
- The response seemed favorable for patients who had prior he matopoietic stem cell transplantation.
- Future crenolanib trials in pediatric patients are planned.

References

- . Man, C.H., et al., Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. *Blood, 2012.*
- 119(22): p. 5133-43. 2. Rubio, P., et al., NPM1, FLT3 and CEBPA mutations in pediatric patients with AML from Argentina: incidence and prognostic value. *Int J Hematol*, 2016. 104(5): p. 582-590.
- 3. Smith, C.C., et al., Crenolanib is a selective type I pan-FLT3 inhibitor. *Proc Natl Acad Sci U S A, 2014.* 111(14): p. 5319-24.
- 4. Zhang, W., et al., Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin Cancer Res, 2014. 20(9): p. 2363-74.
- 5. Zimmerman, E.I., et al., Crenolanib is active against models of drug-resistant FLT3-ITD-positive acute myeloid leukemia. *Blood, 2013.* 122(22): p. 3607-15.

